Interfaces SSI Absolute Position Values

The **absolute position value**, beginning with the Most Significant Bit, is transferred over the data lines (DATA) in synchronism with a CLOCK signal from the control. The SSI standard data word length for single-turn absolute encoders is 13 bits, and for multiturn absolute encoders 25 bits. In addition to the absolute position values, sinusoidal **incremental signals** with 1-V_{PP} levels are transmitted. For a description of the signals, see 1 V_{PP} Incremental Signals.

The following **functions** can be activated via the interface by applying the supply voltage U_P :

• Direction of rotation

Continuous application of the supply voltage U_P to pin 2 reverses the direction of rotation for ascending position values. Pin 2 inactive: Ascending position values with clockwise rotation

Pin 2 active: Ascending position values with counterclockwise rotation

Reset

Brief application of the supply voltage U_P to pin 5 (t_{min} > 1 ms) sets the current position to zero.

Interface	SSI serial
Data transfer	Absolute position values
Data input	Differential line receiver according to EIA standard RS 485 for the CLOCK and CLOCK signals
Data output	Differential line driver according to EIA standard RS 485 for the DATA and DATA signals
Code	Gray code
Ascending position values	With clockwise rotation viewed from flange side (can be switched via interface)
Incremental signals	\sim 1 V _{PP} (see 1 V _{PP} Incremental Signals)
Programming inputs Inactive Active Switching time	Direction of rotation and reset LOW < 0.25 x U _P or input open HIGH > 0.6 x U _P t _{min} > 1 ms
Connecting cable Cable lengths Propagation time	HEIDENHAIN cable with shielding PUR [(4 x 0.14 mm ²) + 4(2 x 0.14 mm ²) + (4 x 0.5 mm ²)] Max. 150 m distributed capacitance 90 pF/m 6 ns/m

Control cycle for complete data word

When not transmitting, the clock and data lines are on high level. The current position value is stored on the first falling edge of the clock. The stored data is then clocked out on the first rising edge.

After transmission of a complete data word, the data line remains low for a period of time (t_2) until the encoder is ready for interrogation of a new value. If a falling clock edge is received within t_2 , the same data will be output once again.

If the data output is interrupted (CLOCK = high for $t \ge t_2$), a new position value will be stored on the next falling edge of the clock, and on the subsequent rising edge clocked out to the subsequent electronics.

Input circuitry of the subsequent electronics

Dimensioning

 $IC_1 = Differential line receiver and driver$ E.g. SN 65 LBC 176 LT 485

- $Z_0~=~120~\Omega$ $C_3~=~330~pF$ (serves to improve noise immunity)

Pin layout

17-pin couplir	ng M23			9		9	110 16 12 13 2 15 14 7 6 5 6	2							
		Power	supply			Incremental signals				Absolute position values				Other signals	
	7	1	10	4	11	15	16	12	13	14	17	8	9	2	5
	U _P	Sensor UP	0V •	Sensor 0 V	Inside shield	A+	A–	B+	B-	DATA	DATA	CLOCK	CLOCK	Direction of rotation	Reset
	Brown/ Green	Blue	White/ Green	White	/	Green/ Black	Yellow/ Black	Blue/ Black	Red/ Black	Gray	Pink	Violet	Yellow	Black	Green

Shield on housing; **U**_P = Power supply voltage

Sensor: With a 5 V supply voltage, the sensor line is connected internally with the corresponding power line.

Vacant pins or wires must not be used!

